DRAWING PARABOLAS USING A TABLE OF VALUES

Drawing the graph of the <u>simplest</u> quadratic equation: $y = x^2$

To draw a parabola using a table of values, find 6 or 7 points so that a "ghostly outline" of points is visible. Draw the line between points as a smooth curve, rather than a straight line.

Location of x-intercept:

EXAMPLES

1. $y = -x^2 + 8$, x from -3 to 3

х	$y = -x^2 + 8$	(x, y)
-3	$-()^{2}+8=$	
-2	- () ² + 8 =	
-1	$-()^{2}+8=$	
0	- () ² + 8 =	
1	- () ² + 8 =	
2	- () ² + 8 =	
3	- () ² + 8 =	

Location of x-intercept:

2. $y = x^2 - 2x - 8$, x from -3 to 3

Location of x-intercept:

Location of y-intercept:

Some Initial Observations About Quadratic Equations $(y = Ax^2 + Bx + C)$

What does the negative sign in front of the x^2 term do to the graph? (i.e., x^2 vs. $-x^2$)

What happens when there is a coefficient in front of the x term?

What happens when the equation has a constant term at the end? (i.e., the value of $C \neq 0$)